
Rev. 1.2 12/03 Copyright © 2003 by Silicon Laboratories AN108-DS12

AN108

IMPLEMENTING A REALTIME CLOCK

Relevant Devices
This application note applies to the following
devices:

C8051F000, C8051F001, C8051F002,
C8051F005, C8051F006, C8051F007,
C8051F010, C8051F011, and C8051F012.

Introduction
The purpose of this note is to provide an example
of how to add a real-time clock (RTC) feature to a
C8051F00x or C8051F01x device. Example soft-
ware is included at the end of this note.

Key Points
• The external oscillator can be used to drive a

crystal for the RTC while the system clock uses
the high-frequency internal oscillator.

• The system clock can be derived from the inter-
nal or external oscillator, and can change
sources without compromising the accuracy of
the RTC.

• The RTC uses Timer 2, which is configured to
increment on falling edges of an external input.

• Comparator 0 is used to convert the crystal
waveform to a square wave.

Overview
Real-time clocks are used in many embedded
applications to record the time at which an event
occured, a pressure sensor was activated, or an
ADC reading was taken, for example. Currently
there are off-the-shelf components that contain a
small crystal time base coupled with simple logic
that have standardized interfaces for connecting to
the I2C, SPI, or parallel port of a microcontroller.

This application note describes how to implement
the function of a real-time clock inexpensively by
using a C8051Fxxx device, a small 32 kHz watch
crystal, and a few passive components.

Because the CPU overhead and resource require-
ments of the RTC are very small, this functionality
can easily be added to an existing 8051-based sys-
tem.

In this design, a 32 kHz watch crystal is connected
to the external oscillator of the C8051 device. The
output signal from the crystal oscillator is condi-
tioned by one of the internal analog comparators
and fed into a timer input. The timer is configured
in auto-reload mode to generate an interrupt at a
periodic rate, one-tenth second in this example.
The interrupt service routine for the timer updates a
series of counters for seconds, minutes, hours, and
days.

AN108

2 Rev. 1.2

Hardware Description
A schematic of the hardware is shown in Figure 1.
This design uses an external 32kHz watch crystal
as the time base for the RTC. This crystal is con-
nected between the XTAL1 and XTAL2 pins of the
device. Note that the external oscillator’s crystal
driver can be enabled while the CPU core is operat-
ing from the internal oscillator.

The XTAL2 output is fed into the (+) input of an
on-chip analog comparator (Comparator 0). A low-
pass filtered version of the XTAL2 signal is fed to
the (-) input of the comparator to provide the DC
bias level at which to detect the transitions of the
oscillating signal. The corner frequency of this fil-
ter, where R = 1 MΩ and C = 0.022 µF, is substan-
tially below the frequency of oscillation.

The output of the on-chip comparator is routed to
an external GPIO pin (CP0, determined by the
crossbar) and connected to the input signal of
Timer 2 (T2, also determined by the crossbar).
Timer 2 increments once for each falling edge
detected at the T2 input.

Timer 2 is configured in 16-bit auto-reload mode to
generate an interrupt every 3200 counts, or once
every tenth of a second. The interrupt handler for
Timer 2 updates a series of counters for tenths of
seconds, seconds, minutes, hours, and days.

The default mode of the RTC implementation
assumes that the CPU system clock (SYSCLK) is
derived from the high-speed internal oscillator.
When the system clock is changed to use the exter-
nal 32kHz source, for example to save power,
Timer 2 is switched by the software to use
SYSCLK as its time base. Synchronizing the clock

XTAL1

XTAL2

CRYSTAL

OSCInput
Circuit

CP0+

CP0-

P0.0

P0.1
Timer 2

CP0

Digital
Crossbar

R

C

CP0-
XTAL2

LPF

Figure 1. Connection Diagram

AN108

Rev. 1.2 3

switching inside the RTC interrupt handler ensures
no loss of accuracy.

Crossbar Configuration
The connection between internal digital peripherals
and the GPIO pins is handled by the crossbar. In
this design, the crossbar routes the CP0 output and
T2 input to GPIO pins P0.0 and P0.1, respectively.
It is important to note that the specific port pins
used will change if peripherals with a higher cross-
bar priority are enabled (see AN001). Crossbar
setup is accomplished with the following state-
ments:

; enable CP0 outpput
mov XBR0, #80h
; enable T2 input
mov XBR1, #20h
; enable crossbar and weak pull-
; ups
mov XBR2, #40h

Oscillator Configuration
Refer to AN002 for details on configuring external
oscillator. The following statement configures and
enables the external oscillator for use with a
32 kHz crystal.

; enable external oscillator
; in ‘crystal’ mode; XFCN = 001
; for a 32kHz crystal
mov OSCXCN, #61h

Once configuration is complete, the external oscil-
lator must be checked for stability before enabling
the timer. The XTLVLD bit (OSCXN.7) is set
when the crystal is running and stable. Software
polls the XTLVLD bit before enabling Timer 2:

; wait until the external osc.
; is stable
WAIT:
mov ACC, OSCXCN
jnb ACC.7, WAIT

; enable Timer 2
setb TR2

Comparator Configuration
The Comparator 0 setup involves setting the posi-
tive and negative hysteresis and enabling the com-
parator. The comparator hysteresis can be
configured in the comparator control register
CPT0CN. Since the voltage of the XTAL2 signal
will be fairly large (500 mV to 3 V), the CP0 hys-
teresis can be set high to provide noise immunity.
The hysteresis is set and the comparator is enabled
with the following statements:

; set CP0 hysteresis 10mV/10mV
mov CPT0CN, #0Ah

; enable CP0
orl CPT0CN, #80h

Timer Configuration
When the CPU system clock (SYSCLK) is derived
from the high-frequency internal oscillator, Timer 2
is configured in auto-reload mode to count falling
edges on the external signal T2. Timer 2 is config-
ured with the following statement:

mov T2CON, #02h

We must also set the initial and reload values for
Timer 2. The initial value is the value loaded into
Timer 2 before it is enabled, and the reload value,
held in RCAP2H (high byte) and RCAP2L (low
byte), is loaded into Timer 2 after an overflow. The
initial and reload values, which are identical, are
determined by the precision required of the real-
time clock. This design implements precision of a
tenth of a second; therefore, Timer 2 is set to over-
flow every tenth of a second, or every 3200 counts
of the 32 kHz time base. We set the COUNT value
to 3,200, and set the reload values in the RCAP2
registers with the following commands:

;set T2 reload high byte
mov RCAP2H, #HIGH(-COUNT)

;set T2 reload low byte
mov RCAP2L, #LOW(-COUNT)

AN108

4 Rev. 1.2

When Timer 2 overflows, it will be reloaded to
overflow in another 3200 counts, and it will gener-
ate an interrupt. The program will vector to the
Timer 2 interrupt service routine every tenth of a
second to increment the counters. Because the
interrupt service routine is short and is only called
once every tenth of a second, CPU utilization is
remarkably low.

Once Timer 2 is configured, its interrupt must be
enabled with the following statement:

; enable Timer 2 interrupt
setb ET2

Timer 2 is enabled after all other timer configura-
tion is complete by setting its run bit:

; start Timer 2
setb TR2

System Clock Switching
The default configuration of this RTC example
assumes that the CPU system clock (SYSCLK) is
derived from the high-speed internal oscillator. If
SYSCLK is derived instead from the external oscil-
lator, for power savings, the configuration for
Timer 2 must be changed to use SYSCLK as the
time base because signals at T2 can have a maxi-
mum frequency of SYSCLK / 4 in order to be
properly detected.

The process for changing the system clock is as fol-
lows:

1. Stop the timer (TR2 = ‘0’).

2. Change timer time base.

3. Change SYSCLK time base.

4. Add correction factor to timer’s counter.

5. Start the timer (TR2 = ‘1’).

In order to guarantee that no external clock edges
are missed, the SYSCLK should be updated in the
RTC’s interrupt service routine.

The system clock can be changed by setting either
SET_EXT_OSC (to change to the external oscilla-
tor) or SET_INT_OSC (to change to the internal
oscillator) to ‘1’. These bits are used as flags in the
Timer 2 ISR to permit changing of the system
clock without sacrificing RTC accuracy. Details are
given in the software description at the end of this
report.

Software Description
This section contains a description of the software
flow. The program listing begins on page 6.

Main Function
The MAIN function is used to configure the cross-
bar, external oscillator, comparator, and timer.
First we setup the external crystal by enabling the
external oscillator and setting the power factor bits.

The crossbar setup and CP0 setup values described
above are then loaded, and then each are enabled.
The crystal must be settled before Timer 2 is
enabled. When the crystal is settled, the XTLVLD
bit is set by hardware, and the program moves past
the WAIT loop. At the end of the MAIN function
the RTC_INIT function is called, Timer 2 is
enabled, and global interrupts enabled.

RTC Initialization Function
The RTC_INIT function is used to reset the counter
values and to configure Timer 2. This function can
be used as a reset for the RTC. After clearing the
counter values, the initial value for Timer 2 is set to
the COUNT value as described in the configuration
section. The COUNT value is also loaded into the
reload registers (RCAP2H & RCAP2L). Timer 2 is
then set to increment on external input edges, and
the Timer 2 interrupt is enabled.

AN108

Rev. 1.2 5

Timer Interrupt Service Routine
The Timer 2 ISR is called each time Timer 2 over-
flows (once every tenth of a second). When the
ISR is called, it first clears the Timer 2 interrupt
flag (TF2). The ISR then checks for overflows in
all of the counters, starting with the tenths counter.
If the tenths counter is at 9, it is reset to 0 and the
seconds are checked for an overflow. Similarly, if
the seconds are at 59, they are reset to 0, and the
minutes are checked. The hours and days are
checked in the same fashion. The counter is incre-
mented, and then the oscillator selection bits
(SET_EXT_OSC and SET_INT_OSC) are
checked.

Oscillator Selection
If the SET_EXT_OSC bit is set, the bit is cleared,
and the program jumps to the EXT_OSC label.
First, OSCICN is checked--if the system clock is
already using the external oscillator, the ISR exits.
If not, Timer 2 is disabled to avoid any miscounts
during the system clock switch. CKCON is setup
so that the Timer 2 input clock is the system clock
divided by one. Timer 2 is then set to increment on
the system clock, and the Timer 2 counter register
is updated to compensate for missed ticks during
the SYSCLK transition. Between the system clock
switch and the Timer 2 re-enable, Timer 2 misses 5
ticks. The correction value, EXT_COR, is set to 5;
this value is added to the Timer 2 register before
the system clock is switched to the external oscilla-
tor. After the switch, Timer 2 is enabled again, and
the ISR exits.

If the SET_INT_OSC bit is set, the bit is cleared
and the program jumps to the INT_OSC label.
OSCICN is checked first to make sure the system
clock is not already using the internal oscillator. If
it is not, Timer 2 is disabled for the clock switch.
The internal oscillator is selected as the system
clock, and then the correction value, COR_INT is
added to the Timer 2 register. In this case, 3 ticks
are missed during the switch. COR_INT, which is
set to 3, is added to Timer 2. The external input pin
is selected as the Timer 2 input, and Timer 2 is

enabled. The ISR then exits to wait for another
overflow.

Counter Access
The tenths/seconds/minutes/etc counters can be
accessed by calling the SAVE routine. The SAVE
routine first saves the current state of the Timer 2
interrupt flag in the Carry bit and then disables the
Timer 2 interrupt so that no interrupts occur during
the save. Disabling the interrupt does no harm here
because the interrupt will be enabled again at the
end of the SAVE routine. If an interrupt is gener-
ated during the SAVE routine, it will be serviced as
soon as the Timer 2 interrupt is enabled again.
After ET2 is cleared, each counter is saved
(TENTHS into STORE_T, SECONDS into
STORE_S, etc). The interrupt flag is restored, and
the function returns to its caller.

AN108

6 Rev. 1.2

Software Example
;--
; CYGNAL, INC.
;
;
; FILE NAME : RTC_1.asm
; TARGET DEVICE : C8051F0xx
; DESCRIPTION : Software implementation of a real-time clock
;
; AUTHOR : JS
;
; Software implementation of a real-time clock using a 32KHz crystal oscillator.
; This program uses the crystal driver, XTAL2 to drive Comparator 0. The positive
; comparator input is from XTAL2, and the negative input is an averaged version of
; XTAL2. The averaging is done by a low pass filter. The output of Comparator 0
; is routed to the Timer 2 input (T2).
;
; Timer 2 is configured in auto-reload mode, and is set to trigger on
; the external input pin connected to the Comparator 0 output.
;
; This code assumes the following:
;
; (1) An external oscillator is connected between XTAL1 and XTAL2
; (2) A low pass averaging filter is connected bewteen XTAL2 and CP0-
; (3) XTAL2 is routed to CP0+
; (4) CP0 output is routed to Timer 2 input through the port pins assigned
; by the crossbar
;
; For a 32KHz crystal, the low pass filter consists of a 0.022uF capacitor and a
; 1 Mohm resistor.
;--

;--
; EQUATES
;--

$MOD8F000

; Count value: This value is used to define what is loaded into timer 2 after each
; overflow.The count value is 3200, meaning the timer will count 3200 ticks before an
; overflow. Used with the 32KHz crystal, this means the timer will overflow every
; tenth of a second.

COUNT EQU 3200d ; count value

; Compensation factors for system clock switching used to update Timer 2 after a
; system clock change

EXT_COMP EQU 5d
INT_COMP EQU 3d

;--
; VARIABLES
;--

DSEG

AN108

Rev. 1.2 7

org 30h

TENTHS: DS 1 ; counts tenths of seconds
SECONDS: DS 1 ; counts seconds
MINUTES: DS 1 ; counts minutes
HOURS: DS 1 ; counts hours
DAYS: DS 1 ; counts days

STORE_T: DS 1 ; storage byte for tenths,
; used by SAVE routine

STORE_S: DS 1 ; storage byte for seconds
STORE_M: DS 1 ; minutes
STORE_H: DS 1 ; hours
STORE_D: DS 1 ; days

BSEG

org 00h

SET_EXT_OSC: DBIT 1 ; flag to change system clock
; to external osc

SET_INT_OSC: DBIT 1 ; flag to change system clock
; to internal osc

;--
; RESET and INTERRUPT VECTORS
;--

CSEG

; Reset Vector
org 00h
ljmp MAIN

; Timer 2 ISR Vector
org 2Bh
ljmp T2_ISR ; Timer 2 ISR

;--
; MAIN PROGRAM
;--

org 0B3h

MAIN:

mov OSCXCN, #61h ; enable external oscillator
; in ‘crystal’ mode for a
; 32kHz watch crystal

mov WDTCN, #0DEh ; disable watchdog timer
mov WDTCN, #0ADh

; Setup Crossbar
mov XBR0, #80h ; enable CP0 output
mov XBR1, #20h ; enable T2 input
mov XBR2, #40h ; enable crossbar

; Setup Comparator 0

AN108

8 Rev. 1.2

mov CPT0CN, #08h ; set positive hysteresis to 10mV
orl CPT0CN, #02h ; set negative hysteresis to 10mV
orl CPT0CN, #80h ; enable CP0

acall RTC_INIT ; Initialize RTC and Timer 2

WAIT:

mov ACC, OSCXCN ; wait until the external
; oscillator is steady

jnb ACC.7, Wait ; by checking the XTLVLD bit
; in OSCXCN

setb TR2 ; turn on Timer 2 (starts RTC)

setb EA ; enable global interrupts

jmp $; spin forever

;---
; Initialization Subroutine
;---

RTC_INIT:

; Clear all counters
mov TENTHS, #0
mov SECONDS, #0
mov MINUTES, #0
mov HOURS, #0
mov DAYS, #0

; Setup Timer2 in auto-reload mode to count falling edges on external T2

mov TH2, #HIGH(-COUNT) ; set initial value for timer 2
mov TL2, #LOW(-COUNT)

mov RCAP2H, #HIGH(-COUNT) ; set reload value for timer 2
mov RCAP2L, #LOW(-COUNT)

mov T2CON, #02h ; configure Timer 2 to increment
; falling edges on T2

setb ET2 ; enable Timer 2 interrupt
ret

;---
; Timer 2 ISR
;---

T2_ISR:
clr TF2 ; clear overflow interrupt flag
push PSW ; preserve PSW (carry flag)
push ACC ; preserve ACC

; Check for overflows
mov A, TENTHS
cjne A, #9d, INC_TEN ; if tenths less than 9, jump

; to increment
mov TENTHS, #0 ; if tenths = 9, reset to zero,

AN108

Rev. 1.2 9

; and check seconds

mov A, SECONDS
cjne A, #59d, INC_SEC ; if seconds less than 59, jump

; to increment
mov SECONDS, #0 ; if seconds = 59, reset to zero,

; and check minutes

mov A, MINUTES
cjne A, #59d, INC_MIN ; if minutes less than 59, jump

; to increment
mov MINUTES, #0 ; if minutes = 59, reset to zero,

; and check hours

mov A, HOURS
cjne A, #23d, INC_HOUR ; if hours less than 23, jump

; to increment
mov HOURS, #0 ; if hours = 23, reset to zero,

; and check days

inc DAYS ; DAYS will roll over after 255

jmp CHECK_OSC ; jump to check for oscillator
; change request

;Increment counters--

INC_TEN:
inc TENTHS ; increment tenths counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

INC_SEC:
inc SECONDS ; increment seconds counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

INC_MIN:
inc MINUTES ; increment minutes counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

INC_HOUR:
inc HOURS ; increment hours counter
jmp CHECK_OSC ; jump to check for oscillator

; change request

;Oscillator changes--

CHECK_OSC:
jbc SET_EXT_OSC, EXT_OSC ; check for external oscillator

; select
jbc SET_INT_OSC, INT_OSC ; check for internal oscillator

; select
jmp END_ISR ; exit

EXT_OSC: ; switch system clock to
; external oscillator

mov ACC, OSCICN ; check current system clock

AN108

10 Rev. 1.2

jb ACC.3, END_ISR ; exit if already using external
; oscillator

orl CKCON, #20h ; select system clock (divide by 1)
; for Timer 2

clr TR2 ; disable Timer 2 during clock change
clr CT2 ; select SYSCLK as Timer 2 input

mov A, #LOW(EXT_COR) ; load correction value into
; accumulator

add A, TL2 ; add correction value to Timer 2
; counter register

mov TL2, A ; store updated Timer 2 value

orl OSCICN, #08h ; select external oscillator as
; system clock

setb TR2 ; enable Timer 2 after clock change

jmp END_ISR ; exit

INT_OSC: ; switch system clock to internal
; oscillator

mov ACC, OSCICN ; check current system clock
jnb ACC.3, END_ISR ; exit if already using internal

; oscillator

clr TR2 ; disable Timer 2 during clock change
anl OSCICN, #0f7h ; select internal oscillator as

; system clock

mov A, #LOW(INT_COR) ; load correction value into
; accumulator

add A, TL2 ; add correction value to Timer 2
; register

mov TL2, A ; store updated Timer 2 value

setb CT2 ; select external Timer 2 input
setb TR2 ; enable Timer 2 after clock change

jmp END_ISR ; exit

END_ISR:

pop ACC ; restore ACC
pop PSW ; restore PSW
reti

;---
; Counter Save Routine
;---

SAVE:

mov C, ET2 ; preserve ET2 in Carry

clr ET2 ; disable Timer 2 interrupt
; during copy

AN108

Rev. 1.2 11

mov STORE_T, TENTHS ; copy all counters
mov STORE_S, SECONDS
mov STORE_M, MINUTES
mov STORE_H, HOURS
mov STORE_D, DAYS

mov ET2, C ; restore ET2
ret

;---

END

AN108

12 Rev. 1.2

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	Key Points
	Overview
	Hardware Description
	Crossbar Configuration
	Oscillator Configuration
	Comparator Configuration
	Timer Configuration
	System Clock Switching

	Software Description
	Main Function
	RTC Initialization Function
	Timer Interrupt Service Routine
	Oscillator Selection
	Counter Access

	Software Example

